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Introduction

Coherent Errors in QEC

I Expect them to be worse than stochastic counterparts. (Knill, arXiv, 2004)

I Most research has focused on memory errors:

How to get around them:
I Dynamical Decoupling

- Viola, Knill, Lloyd,
PRL, 1999

I Random Compiling

- Wallman, Emerson,
PRA, 2016

- Campbell, PRA,
2017

Help at high coherence but
add some overhead.

Quantify how bad they are:

I Geller, Zhou, PRA, 2013

I Puzzuoli et al., PRA, 2014

I Gutiérrez et al., PRA, 2016

I Kueng et al., PRL, 2016

I Darmawan, Poulin, PRL, 2017

I Bravyi et al., npj Quantum
Information, 2018

Find that they are worse than
stochastic, but not as bad as thought.

Understand how they
interact with distance:

I Beale et al., PRL,
2018

I Huang, Doherty,
and Flammia,
PRA, 2019

Find that they
approach stochastic as
distance increases.
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Introduction

Statement of Problem

I In many quantum computing architectures, gate errors are the primary concern. As a
result, the act of applying error correction circuits can cause additional error.

I Depending on the architecture, this error can come in the form of coherent overrotation,
meaning it is caused by a unitary channel in the direction of the gate itself.

Our Solution

Use this structure and coherence to our advantage and eliminate these gate errors by directing
them opposite each other.
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Introduction

Physical Motivation

I These coherent overrotation errors often arise from a classical miscalibration. In an
ion-trap quantum computer this could be a miscalibration in laser intensity or timing.

I Even for architectures which also have issues with T2 times, our technique will help with
any coherence that does exist in the system.
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Introduction

What is a Coherent Overrotation Error?

In the field of quantum error correction, coherent errors are considered to be more damaging
that stochastic errors on since they have:

I non-zero off-diagonal terms in the process matrix.

I error probabilities which add quadratically.

However, unlike stochastic errors these coherent errors are unitary channels and therefore
invertible.

•
=

RY (v (1 + ε) π
2 )

XX (s (1 + ε)2 π
4 )

RX (−s (1 + ε) π
2 ) RY (−v (1 + ε) π

2 )

RX (−vs (1 + ε) π
2 )

s, v = ±1

Maslov, New J. Phys., 2017.
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Introduction

Error Model

I Errors follow every gate, and we assume that the strength of the overrotation is constant
in time.

I Allow ourselves to vary strength of error and level of coherence.

Whenever a gate G is applied in our simulation, it is followed by an error of the form in Eq. 1:

G

εG (ρ) = κ · εcG (ρ) + (1− κ) · εsG (ρ) (1)

εcG (ρ) = exp(−iεG )ρ exp(iεG )

εsG (ρ) = cos2(ε)IρI + sin2(ε)GρG .
(2)

Wallman, Granade, Harper, Flammia, New J. Phys., 2017. Trout et al., New J. Phys., 2018
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Basics of Stabilizer Slicing

Architectural Requirements

To implement our method, an architecture will need to satisfy two conditions:

I The freedom to apply any rotational gate in the clockwise or counterclockwise direction.

I For a code with 2n-body stabilizers, the ability to generate native multi-qubit gates by
evolving an (n + 1)-body Hamiltonian

The first condition is already satisfied for many architectures, and in an ion-trap quantum
computer corresponds to being choose the direction of our Mølmer-Sørensen gates.

Dripto M. Debroy (Duke University) QEC 2019 July 31st, 2019 7 / 18



Basics of Stabilizer Slicing

Stabilizer Slicing

Our Plan:
I Split the stabilizer S into two pieces SL and SR .

I Apply these gates as ±π rotations where the angles are chosen so the gates rotate in
opposite directions.

I Due to the symmetries of our stabilizer state, the overrotation errors will then cancel out.

S |ψ〉 = |ψ〉
SR |ψ〉 = SL|ψ〉

∴ exp(iθSR)|ψ〉 = exp(iθSL)|ψ〉
(3)

UL
EU

R
E |ψ〉|+〉 = exp(iεθLCSL) exp(iεθRCSR)|ψ〉|+〉

= exp(iεπCSL) exp(iε(−π)CSL)|ψ〉|+〉
=|ψ〉|+〉

(4)
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Basics of Stabilizer Slicing

Ion Trap Example: 2 Qubit Stabilizer

• RY (π2 )

XX (−π
4 )

RX (π2 ) RY (−π
2 )

• → RY (π2 )

XX (π4 )

RX (−π
2 ) RY (−π

2 )

|0〉 |0〉

I I’ve chosen s = −s ′ = 1 to implement slicing, and v = v ′ = 1 to best cancel single qubit
gates.

I In this weight-2 stabilizer, we only need weight-2 gates to properly slice it.
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Results and Discussion

Codes Considered

I We simulated our technique on the [[9,1,3]] Rotated Surface and Bacon-Shor codes.

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Tomita, Svore, PRA, 2014. Bomb́ın, Delgado, PRA, 2007. Aliferis, Cross PRL, 2007. Bacon, PRA, 2006. Li, PRA, 2018.
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Results and Discussion

Testbed Circuit

|0〉⊗n / Enc . QEC

I Run QEC with circuit level error on a perfect encoded state.

I Measure all data qubits and classically decode to find logical error rate.

I Logical error rates are calculated using quantumsim, a full density-matrix simulator.

https://gitlab.com/quantumsim/quantumsim
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Results and Discussion

Surface-17: Simplified Model

I First we implement stabilizer slicing on a [[9, 1, 3]] surface code where we have allowed
ourselves 2 and 3 qubit Clifford operations.

I We only put errors on the entangling gates.
I Gate error rate of 10−3 on both weight-2 and weight-3 gates.

Stabilizer	Sliced
Standard

Lo
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Results and Discussion

Gauges in Bacon-Shor-13

The Bacon-Shor code is a subsystem code, meaning that it has less than n − k stabilizers.
This means that there are gauge operators which commute with all the stabilizers but do not
change the logical information of the encoded state.

0 1 2

3 4 5

6 7 8

XX
ZZ
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Results and Discussion

Bacon-Shor-13: Ion Trap Gate Set

I In this simulation we slice gauges on a [[9, 1, 3]] Bacon-Shor code where the circuit has
been decomposed into ion trap gates.

I There are errors on all gates, so we do not fully eliminate error.
I Gate error rate of 5× 10−4 for single qubit gates.
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Lo
gi
ca
l	E

rr
or
	(	
x	
10

-4
)

0

1

2

3

4

5

6

7

Unitarity
0 0.2 0.4 0.6 0.8 1

Dripto M. Debroy (Duke University) QEC 2019 July 31st, 2019 14 / 18



Results and Discussion

Effects of Gauge Flipping

I Errors and corrections in the Z -type stabilizer measurements will flip the gauges. This will
cause our cancellations to disappear.

I By changing our circuit based on previous measurements we can follow the black line.
I Gate error of 10−3 and κ = 1.

Bacon-Shor-13
Best	Case
Worst	Case

Lo
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Results and Discussion

Fully Optimized Performance Ion Trap Gates and Stark Shift Errors

I Comparison of fully optimized and canceled circuits for Surface-17 and Bacon-Shor-13.
I Circuits are made with currently available ion trap gates.
I Also include Z -type Stark shift errors during gates to make model more realistic.
I Gate error rate of 10−3.

Surface-17
Bacon-Shor-13

Lo
gi
ca
l	E

rr
or

10−4

10−3

0.01

Unitarity
0 0.2 0.4 0.6 0.8 1

Dripto M. Debroy (Duke University) QEC 2019 July 31st, 2019 16 / 18



Conclusion

Connections to Dynamical Decoupling

bb

SR

n

n

|ψ〉 n

n

|+〉 b

SL

S

Y Y

I If an architecture does not permit differently directed gates, these single qubit gates can
be used to apply the same technique.

I Produces similar results depending on the quality of your single qubit gates.

I Other studies of the intersection of Dynamical Decoupling and QEC can be found in Ng,
Lidar, Preskill (2011) and Cai, Xu, Benjamin (2019).
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Conclusion

Stabilizer Slicing Conclusion

I Implementing stabilizer slicing significantly reduces the impact of overrotation error in the
coherent case.

I There is no overhead in the way of additional gates, timing, or qubits.
I The technique can be applied to a wide range of codes.

More Information

Dripto M. Debroy, Muyuan Li, Michael Newman, Kenneth R. Brown
Phys. Rev. Lett. 121, 250502 (2018)

arXiv: 1810.01040
dripto@phy.duke.edu
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