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Abstract

Coherent errors are a dominant noise process in
many quantum computing architectures. Unlike
stochastic errors, these errors can combine construc-
tively and grow into highly detrimental overrota-
tions. To combat this, we introduce a simple tech-
nique for suppressing systematic coherent errors in
low-density parity-check (LDPC) stabilizer codes,
which we call stabilizer slicing.
For conventional 2-body ion trap gates, we ob-
serve an 89-fold improvement for Bacon-Shor-13
with purely coherent errors which should be testable
in near-term fault-tolerance experiments. With ac-
cess to native gates generated by 3-body Hamilto-
nians, we can completely eliminate purely coherent
overrotation errors, and for overrotation noise of 0.99
unitarity we achieve a 135-fold improvement in the
logical error rate of Surface-17. The first scheme
takes advantage of the prepared gauge degrees of
freedom, and to our knowledge is the first example
in which the state of the gauge directly affects the
robustness of a code’s memory. This work demon-
strates that coherent noise is preferable to stochastic
noise within certain code and gate implementations
when the coherence is utilized effectively.

Architectural Requirements

To perform stabilizer slicing, we require a quan-
tum computing architecture with two particular
experimental degrees of freedom.

•Our architecture gives us the directional
freedom to apply any gate in the clockwise or
counterclockwise direction.

•For a code with 2n-body stabilizers, our
architecture can generate native multi-qubit
gates by evolving an (n + 1)-body
Hamiltonian.

Error Model

We model our overrotation errors as a mixed chan-
nel with two parameters, as this is a better model of
physical errors. The first parameter is the unitarity
κ. The second parameter is the overrotation angle
ε, which controls the strength of the error. Conse-
quently, the error following some perfect gate G has
the form,

εG(ρ) = κ · εcG(ρ) + (1− κ) · εsG(ρ)

where εcG and εsG are coherent and stochastic over-
rotation channels with equal fidelity given by,

εcG(ρ) = exp(−iεG)ρ exp(iεG)
εsG(ρ) = cos2(ε)IρI + sin2(ε)GρG.

Ordinarily, we would expect the latter channel, cor-
responding to κ = 0, to produce lower logical error
rates due to the dropout of off-diagonal terms. To
best display the improvements of stabilizer slicing,
we do not include measurement error.

Stabilizer Slicing

For a given stabilizer S, let SL and SR be two dis-
joint Pauli operators such that SLSR = S. Then if
|ψ〉 is a clean codestate,

S|ψ〉 = |ψ〉
SR|ψ〉 = SL|ψ〉

∴ exp(iθSR)|ψ〉 = exp(iθSL)|ψ〉.
If we apply our stabilizer through two controlled
π/2-rotations with opposing directions and the er-
ror model above we have the following overrotation
errors:
UL
EU

R
E |ψ〉|+〉 = exp(iεθLCSL) exp(iεθRCSR)|ψ〉|+〉

= exp(iεθLCSL) exp(iε(−θL)CSL)|ψ〉|+〉
=|ψ〉|+〉.

More Information and References

•arXiv: 1810.01040
•Phys Rev Letters: 121.250502

Codes Considered

Low Density Parity-Check (LDPC) Codes are
quantum error correcting code families in which
the number of stabilizers each qubit interacts
with, and the number of qubits involved in each
stabilizer, do not increase as the distance of the
code is increased. The most popular example is
the rotated surface code which we consider.
We also have an application using the Bacon-
Shor code, a quantum error correcting code fam-
ily that is not LDPC but still has symmetries
which we can use for our technique, at a reduced
effectiveness (See Figures 2 and 3). In our simu-
lations we consider the [[9,1,3]] versions of these
two codes.
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Figure 1: Logical error rates and quadratic fits for Surface-17
assuming access to native 3-body gates. As expected, in the
fully coherent case we completely eliminate the noise present in
our model. 2- and 3-qubit gate infidelities are 1.0× 10−3.
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Figure 2: One-sided logical error rates for Bacon- Shor-13. The
optimized line does not intersect the x-axis in the purely coher-
ent case since we have included single qubit overrotations. Two-
qubit gate infidelity is sin2(ε2) = 5.0×10−4 and ε2 = (1+ε1)2−1.

Bacon-Shor Gauges

In Bacon-Shor codes, there are gauge operators
which represent degrees of freedom which do not
change the logical state and commute with all
the stabilizers. These operators only have their
eigenvalues changed due to errors and subsequent
corrections. We prepare a state in which all of
these gauge operators start with +1 eigenvalues,
and then treat them as weight-2 stabilizers. As
errors occur these eigenvalues flip sign and our
cancellations disappear, leading to worsened per-
formance. This is the first case in which the eigen-
values of gauge operators are shown to have an
impact on the performance of a quantum mem-
ory.

Effects of Gauge Decay in [[9,1,3]]
Bacon-Shor
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Figure 3: One-sided logical error rates from multiple rounds of
error correction using the fully optimized Bacon Shor circuit in
the purely coherent case of Figure 2’s error model.
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